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Abstract
We study Kondo physics in the algebraic spin liquid, a term recently proposed to describe
ZnCu3(OH)6Cl2 (Ran et al 2007 Phys. Rev. Lett. 98 117205). Although the spin dynamics of
the algebraic spin liquid is described by massless Dirac fermions, this problem differs from the
pseudogap Kondo model because the bulk physics in the algebraic spin liquid is governed by an
interacting fixed point where well-defined quasiparticle excitations are not allowed.
Considering an effective bulk model characterized by an anomalous critical exponent, we derive
an effective impurity action in the slave-boson context. Performing a large-Nσ analysis with a
spin index Nσ , we find an impurity quantum phase transition from a decoupled local-moment
state to a Kondo-screened phase. We evaluate the impurity spin susceptibility and specific heat
coefficient at zero temperature, and find that such responses follow power-law dependences due
to the anomalous exponent of the algebraic spin liquid. Our main finding is that Wilson’s ratio
for the magnetic impurity depends strongly on the critical exponent in the zero temperature
limit. We propose that Wilson’s ratio for the magnetic impurity may be one possible probe to
reveal the criticality of the bulk system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent experiments have claimed the emergence of spin
liquid (SL) phases in materials of geometrically frustrated
lattices such as Cs2CuCl4 [1], κ-(ET)2Cu2(CN)3 [2], and
ZnCu3(OH)6Cl2 [3], where no symmetries associated with
spin rotations (magnetic ordering) and lattice translations
(valance bond ordering) are broken at low temperatures while
charge fluctuations are frozen due to strong electron–electron
interactions (Mott insulator). An important issue is the nature
of such SL phases. Although spin susceptibility, specific heat,
and thermal transport measurements can determine possible
spin liquids, there still remains uncertainty.

Consider Cs2CuCl4 with an anisotropic triangular lat-
tice [1]. Although this material exhibits magnetic long-range
spiral ordering below T = 0.62 K with an incommensurate
wavevector, the spin-fluctuation spectrum in inelastic neutron
scattering experiments has shown a large high-energy contin-
uum beyond the spin-wave description. In addition, this contin-
uum spectrum survives above the Neel temperature. More de-
tailed analysis revealed that the continuum follows Imχ(ω) ∼
ω−η with an anomalous exponent η, suggesting the presence
of deconfined critical spinons. Such spin-fluctuation measure-
ments suggest several candidates of SL scenarios, for exam-
ple, decoupled one-dimensional chains [4], proximate gapped

SLs [5], algebraic spin liquids (ASLs) [6], algebraic vortex liq-
uids [7], and so on [8].

Recently, Florens et al studied the role of magnetic
impurities in both the Z2 SL phase and the O(4) quantum
critical point (QCP) separating the spiral magnetic order from
the Z2 SL [9]. Although impurity moments coupled to
spin-1 bosons (spin singlet–triplet excitations) in conventional
paramagnets are only partially screened even at the bulk O(3)
QCP [10], they have shown that the presence of deconfined
bosonic spinons can display a bosonic version of the Kondo
effect. Furthermore, they found a weak-coupling impurity
quantum phase transition (I-QPT) from a local-moment state
to a fully screened phase. This study implies that the magnetic
impurity can be utilized as a probe for elementary excitations,
thus identifying the nature of SLs.

In this paper we investigate the Kondo effect in the
ASL, recently proposed to be realized in the Kagome
antiferromagnet ZnCu3(OH)6Cl2 [11], where no magnetic
order is observed down to very low temperatures of about
50 mK compared to the Curie–Weiss temperature (>200 K),
and there is no sign of a spin gap in dynamical neutron
scattering [3]. However, it is not perfectly clear whether all
experiments are consistent with the ASL conjecture. The ASL
picture is not consistent with the temperature-linear specific
heat below 0.5 K and saturation of the spin susceptibility to
a finite value below 0.3 K [11], because these measurements
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indicate the existence of a finite density of states at the Fermi
energy. This discrepancy may result from the presence of
disorder in real materials. To examine the role of magnetic
impurities in the ASL can be an important test in revealing the
genuine nature of the SL phase of this compound.

The ASL can be found from the fermion representation of
the Heisenberg model via the flux mean-field ansatz [12]. This
reminds us of the previous study of the Kondo effect in the flux
phase by Cassanello and Fradkin [13]. More generally, one
may regard the present impurity problem as the class of the
pseudogap Kondo model [13–15], where the fermion density
of states vanishes as ρ(ε) ∼ |ε|r near the Fermi energy. The
case of r = 0 corresponds to a Fermi liquid while the r = 1
case coincides with Dirac fermions arising from the flux phase
or d-wave superconductor. In contrast with the Kondo effect of
the Fermi liquid, the pseudogap Kondo model has shown that
Kondo screening of the magnetic impurity can appear beyond
some critical value of the Kondo coupling constant. Thus, the
I-QPT from a local-moment state to a Kondo-screened phase
was found in this model. Furthermore, the exponent r in the
density of states was shown to play the role of an effective
dimension in the problem. The r = 1 case was found to
be its upper critical dimension, thus exhibiting logarithmic
corrections to scaling while the case of r = 0 lies in its lower
critical dimension.

However, there is an important difference between the
pseudogap Kondo problem and ASL Kondo physics. The
bulk physics in the pseudogap Kondo problem is governed by
a non-interacting (Gaussian) fixed point, thus allowing well-
defined electron-like quasiparticle excitations. On the other
hand, the ASL physics is determined by an interacting fixed
point (the conformal invariant fixed point of QED3) [16], where
well-defined spinon quasiparticle excitations corresponding
to electrons do not exist. The absence of quasiparticle
excitations prohibits us from applying the conventional picture
of pseudogap Kondo physics to the ASL Kondo problem. In
this respect the Kondo effect at such an interacting fixed point
is an interesting problem.

The main difficulty is how to introduce the absence of
well-defined spinon excitations in the ASL Kondo problem.
Long-range gauge interactions would result in the anomalous
critical exponent ηψ in the single spinon propagator, destroying
the quasiparticle pole in Green’s function. Unfortunately,
such critical physics can be found within the summation of
infinite diagrams of gauge interactions, and this procedure
prohibits us from analysing the ASL Kondo problem in a
simple mean-field way such as the large-Nσ approximation
with a spin index Nσ , well utilized in the pseudogap Kondo
problem [13]. Considering the mathematical derivation in
the large-Nσ context, the main problem is how to derive an
effective impurity action from the ASL Kondo Lagrangian
through integrating out bulk degrees of freedom, critical spinon
and gauge fluctuations coupled to the magnetic impurity. More
precisely speaking, a bulk-spinon propagator appears to govern
the impurity dynamics in the effective impurity action, thus
how to write its accurate form is an important problem since
the presence of gauge interactions makes such a task nontrivial.

In the present paper we assume the expression of
the spinon Green’s function as an ansatz, introducing an

anomalous critical exponent ηψ . In the text we discuss
the validity of this ansatz in great detail. This effective
representation allows us to analyse the ASL Kondo problem
in the large-Nσ context. Performing slave-boson saddle-
point analysis for the effective impurity action, we find an
I-QPT from a decoupled local-moment state to a Kondo-
screened phase. We evaluate the impurity spin susceptibility
and specific heat coefficient at zero temperature, and find that
such responses follow power-law dependences due to the ASL
anomalous exponent. The main finding of the present study is
that Wilson’s ratio for the magnetic impurity depends strongly
on the ASL critical exponent in the zero temperature limit.
We propose that Wilson’s ratio for the magnetic impurity be
a probe to reveal the criticality of the bulk system.

2. Review of the algebraic spin liquid and its
Kondo problem

For completeness of this paper, it is necessary to review
how the effective Lagrangian, the so-called QED3 describing
the ASL, is derived from a microscopic model such as the
antiferromagnetic Heisenberg model, H = ∑

i j Ji j �Si · �Sj with
Ji j > 0. Inserting the fermion representation of spin
�Si = 1

2

∑
σσ ′ f †

iσ �τσσ ′ fiσ ′ into the Heisenberg model, and
performing the Hubbard–Stratonovich transformation for an
exchange channel, we find an effective one-body Hamiltonian
for fermionic spinons ( fiσ ) coupled to a hopping parameter
(χi j ), Heff = − ∑

i jσ Ji j f †
iσχi j f jσ + ∑

i j Ji j |χi j |2. Notice
that the hopping parameter χi j is a complex number defined
on links i j . Thus, it can be decomposed into χi j = |χi j |eiθi j ,
where |χi j | and θi j are the amplitude and phase of the
hopping parameter, respectively. Inserting this representation
of χi j into the effective Hamiltonian, we obtain Heff =
− ∑

i jσ Ji j |χi j | f †
iσ eiθi j f jσ , where the constant contribution for

the ground state energy is omitted. Then, we can see that this
effective Hamiltonian has an internal U(1) gauge symmetry,
H ′

eff[ f ′
iσ , θ

′
i j ] = Heff[ fiσ , θi j ] under the following U(1) phase

transformation, f ′
iσ = eiφi fiσ and θ ′

i j = θi j + φi − φ j . This
implies that the phase θi j of the hopping parameter plays the
same role as the U(1) gauge field ai j .

One can perform a saddle-point analysis of the effective
Hamiltonian to find its stable mean-field phases in various
lattices such as square [12], triangular [6], Kagome [11, 17],
etc. In the present paper we consider the square lattice for
simplicity, where the antiferromagnetic long-range order can
be suppressed via next-nearest-neighbour or ring-exchange
interactions causing frustration. It is not so difficult to extend
the mean-field analysis on the square lattice into that on
the Kagome lattice, proposed to show the SL physics of
ZnCu3(OH)6Cl2 [11].

It has been shown that one possible stable mean-field
phase is a π -flux state, where a spinon gains the phase of
π when it turns around one plaquette. The amplitude of the
hopping parameter is frozen to be |χi j | = ∑

σ |〈 f †
jσ fiσ 〉| ≡

χ0 in the low-energy limit. Then, one finds the low-energy
effective Lagrangian in terms of massless Dirac fermions

2
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interacting via compact U(1) gauge fields [18]

Z =
∫

Dψnσ Daμe− ∫
d3xL,

L =
∑

σ=↑,↓

2∑

n=1

ψ̄nσ γμ(∂μ − iaμ)ψnσ + 1

2e2
|∂ × a|2.

(1)

Here, ψnσ is the two-component massless Dirac spinon, where
n = 1, 2 represent the nodal points of (π/2, π/2) and
(π/2,−π/2), and σ = ↑,↓, SU(2) spin. They are expressed
as ψ1σ = ( f1eσ

f1oσ

)
and ψ2σ = ( f2oσ

f2eσ

)
, respectively. In the spinon

field fnlσ n = 1, 2 represent the nodal points, l = e, o, even
and odd sites, and σ = ↑,↓, its spin, respectively. The Dirac
matrices γμ are given by the Pauli matrices γμ = (σ3, σ2, σ1),
satisfying the Clifford algebra [γμ, γν]+ = 2δμν . aμ is the
U(1) gauge field whose kinetic energy results from particle–
hole excitations of high-energy spinons. e is an effective
internal charge, not a real electric charge.

It has been argued that QED3 has an infrared stable fixed
point showing the conformal symmetry in the large-Nσ limit
(σ = 1, . . . , Nσ ) [16]. This conformal invariant fixed point
is identified with the ASL, displaying algebraically decaying
correlation functions with anomalous critical exponents. To
confirm the ASL as a genuine stable phase a cautious person
may query the stability of such an interacting fixed point
against perturbations. Four-fermion interaction terms are
irrelevant at this fixed point owing to their high scaling
dimensions. In addition, chiral symmetry breaking due to
noncompact gauge fluctuations has been shown not to occur
in the Schwinger–Dyson-equation analysis when the flavour
number of massless Dirac fermions is sufficiently large [19].
Furthermore, it has been argued that confinement as an
instanton effect arising from compact gauge fluctuations does
not seem to appear in the large-Nσ limit because the scaling
dimension of the monopole insertion operator is proportional
to the flavour number Nσ , thus expected to be irrelevant in the
large-Nσ ASL [16].

Criticality of the ASL is characterized by critical
exponents of correlation functions. The single particle
propagator GASL(k) = 〈ψnσ (k)ψ̄nσ (k)〉 can be expressed as

GASL(k) ≈ −i
γμkμ
k2−ηψ , (2)

where ηψ is an anomalous critical exponent. One can find such
an anomalous dimension in the large-Nσ analysis1. However,

1 The renormalized spinon propagator is expressed as G−1
ASL(k) = G−1

0 (k)+
�(k), where G−1

0 (k) = iγμkμ is the inverse of the bare spinon
propagator, and �(k) the spinon self-energy resulting from long-range gauge
interactions. In the 1/Nσ expansion the self-energy is represented as �(k) =
∫ d3q
(2π)3

γμG0(k + q)γνDμν(q), where Dμν(q) is the renormalized propagator

of the U(1) gauge field due to polarization of massless Dirac fermions. The
gauge propagator is obtained to be Dμν(q) ≈ �−1

μν (q) = 8
Nσ q (δμν − qμqν

q2 )

in the Lorentz gauge, where �μν(q) = Nσ
∫ d3k
(2π)3

Tr[G0(k)γμG0(k + q)γν ]
is the polarization function of Dirac fermions. Inserting this gauge propagator
into the expression of the self-energy, one can find the spinon self-energy of
logarithmic momentum dependence �(k) = iηψγμkμ ln( �k ), where ηψ is
the anomalous exponent and �, the momentum cutoff. The absolute value
of the exponent ηψ is proportional to the inverse of the flavour number,

it is difficult to give the critical exponent obtained in this
way a definite physical meaning because it is not gauge
invariant. In this respect the critical exponent ηψ should be
evaluated in a gauge invariant way. The following gauge
invariant Green’s function can be considered, GASL(x) =
〈Tτ [ψnσ (x)ei

∫ x
0 dζμaμ(ζ )ψ̄nσ (0)]〉. Unfortunately, it is not easy

to calculate the critical exponent with such a gauge invariant
expression. Its precise value is far from consensus and still
under current debate. The crucial point is the sign of the
exponent ηψ while its absolute value is given by |ηψ | ∼
N−1
σ in the 1/Nσ approximation (see footnote 1). Most

evaluations [20–23] suggest its negative sign, ηψ < 0.
However, as argued in [24], its negative sign seems to be
unphysical in the sense that the spinon propagator becomes
more ‘coherent’ at longer distances than the propagator of the
free Dirac theory. This result is in contrast with the usual role
of interactions, making elementary excitations less coherent.
This is indeed true in such critical field theories with local
repulsive interactions, for example, the N-vector model, where
positive critical exponents are well known [25]. If the critical
exponent is positive, long-range gauge interactions destabilize
the quasiparticle pole. The quasiparticle weight Z(p) ∼ pηψ

with momentum p vanishes in the long-wavelength and low-
energy limits. In the present paper we do not determine its sign.
Instead, we regard the exponent ηψ as a phenomenological
parameter. Thus, we consider both cases of ηψ < 0 and
ηψ > 0. Furthermore, we assume that the renormalized spinon
propagator (equation (2)) is obtained in a gauge invariant
way [20–24], and the critical exponent ηψ is also gauge
invariant.

Another important character of the ASL is that the con-
formally invariant fixed point has an enlarged global symmetry
beyond the original lattice model, here the Heisenberg Hamil-
tonian. Such an emergent symmetry corresponds to Sp(4) in
the case of SU(2) gauge interactions [26] and SU(4) in the
case of U(1) ones [27]. This enlarged symmetry gives rise to
an important effect on correlation functions, that is, resulting
in the same behaviours between different correlation functions
when the operators in the correlators are related with symme-
try transformations. For example, staggered spin correlations
have the same functional dependency (power-law decay) as the
valance bond fluctuations since they are symmetry-equivalent.
An interesting point is that such correlations are most suscep-
tible in the ASL [27]. This implies that the ASL resides near
the antiferromagnetic and valence bond solid phases. Actu-
ally, Tanaka and Hu have derived an effective Wess–Zumino–
Witten (WZW) Lagrangian from the ASL, describing compe-
tition between antiferromagnetic spin correlations and valence
bond fluctuations [28].

To study the role of magnetic impurities in the ASL bulk,
we consider the Kondo coupling term, HK = JK

2

∑
q

�Sq · �s,

where �Sq is a spin-fluctuation operator of bulk spinons with

i.e. |ηψ | ∼ N−1
σ . Such logarithmic momentum dependence should be

considered as the lowest order in the algebraic function. As a result, one can
obtain the algebraically decaying spinon propagator (equation (2)) from the
following nonperturbative consideration G−1

ASL(k) = iγμkμ[1 + ηψ ln( �k )] ≈
iγμkμ(�k )

ηψ .

3



J. Phys.: Condens. Matter 20 (2008) 125206 K-S Kim and M D Kim

momentum q and �s represents an impurity spin. The bulk-spin
operator has two contributions in the continuum,

�S(q) ≈ �Su(q)+ �Ss(q) =
∑

k

∑

nσσ ′
ψ̄nσ (k − q)γ0

�τσσ ′

2
ψnσ ′(k)

+
∑

k

∑

nσσ ′
ψ̄nσ (k − q)

�τσσ ′

2
ψnσ ′(k), (3)

where �Su(q) represents the uniform component and �Ss(q)
denotes the staggered one [18]. Then, the ASL Kondo problem
is described by the following action

S =
∫

dτ

{∫

d2r

( ∑

σ=↑,↓

2∑

n=1

ψ̄nσ γμ(∂μ − iaμ)ψnσ

+ 1

2e2
|∂ × a|2

)

+ JK

2

∑

q

(�Su(q)+ �Ss(q)
) · �s

}

. (4)

The next task is to obtain an effective impurity action,
integrating out bulk degrees of freedom, spinon and gauge
excitations coupled to the magnetic impurity. One can write
down its schematic expression in the following way

Simp ≈ − J 2
K

4

∫

dτ dτ ′sa(τ )

(∑

q

〈Sa
u (q, τ )S

b
u (−q, τ ′)〉

+
∑

q

〈Sa
s (q, τ )S

b
s (−q, τ ′)〉

)

sb(τ ′)+ · · · , (5)

where 〈Sa
s(u)(q, τ )S

b
s(u)(−q, τ ′)〉 is the renormalized correla-

tion function of staggered (uniform) spin fluctuations and · · ·
are higher moment contributions. As clearly shown in this ex-
pression, dynamics of impurity spin fluctuations are governed
by spin correlations of the bulk at the impurity site. An im-
portant point is that only staggered spin correlations exhibit
an anomalous scaling behaviour with a nontrivial critical ex-
ponent [29, 30]. Uniform spin correlations have no anoma-
lous scaling dimension since they correspond to conserved cur-
rents [18, 29]. Correlations of conserved currents do not have
any anomalous scaling dimensions. This means that the con-
tribution of uniform spin fluctuations is basically the same as
the Kondo effect of the pseudogap Kondo model while that of
staggered spin excitations will give rise to new effects on the
pseudogap Kondo physics. Furthermore, staggered spin fluc-
tuations are most singular in the large-Nσ ASL [27], thus ex-
pected to contribute to the Kondo effect dominantly. In this
respect we take into account staggered spin fluctuations only,
which is an important assumption in the present paper.

3. Kondo physics in the algebraic spin liquid:
large-Nσ analysis

Our objective is to construct a mean-field theory for the present
Kondo problem. Using the slave-boson representation, the
impurity spin is expressed as �s = 1

2

∑
σσ ′ χ†

σ �τσσ ′χσ ′ , and such

fermions satisfy the constraint
∑Nσ

σ=1 χ
†
σχσ = Qχ with Qχ =

2s, where s is spin. Inserting this expression into equation (4)

with equation (3), the Kondo coupling term becomes

HK = − JK

2Nσ

∑

qk

Nn∑

n=1

Nσ∑

σσ ′=1

ψ̄nσ (k − q)χσχ
†
σ ′γ0ψnσ ′(q)

− JK

2Nσ

∑

qk

Nn∑

n=1

Nσ∑

σσ ′=1

ψ̄nσ (k − q)χσχ
†
σ ′ψnσ ′(q) (6)

in the large-Nσ treatment, where the first and second terms
are associated with uniform and staggered spin-fluctuation
contributions, respectively. Since staggered spin fluctuations
will give the main contributions to the ASL Kondo effect,
effects of uniform spin fluctuations are neglected in the
following.

Performing the Hubbard–Stratonovich transformation for
the Kondo-exchange channel, we find an effective ASL Kondo
action as our starting point

Seff =
∫

d3x

[( Nσ∑

σ=1

Nn∑

n=1

ψ̄nσ γμ(∂μ − iaμ)ψnσ + 1

2e2
|∂ × a|2

)

−
Nσ∑

σ=1

Nn∑

n=1

(bs†
n χ

†
σψnσ (0)+ ψ̄nσ (0)γ0χσbs

n)

]

+
∫

dτ

[ Nσ∑

σ=1

χ†
σ (∂τ − hσ )χσ + iλ

( Nσ∑

σ=1

χ†
σχσ − Qχ

)

+ Nσ
2JK

Nn∑

n=1

bs†
n γ0bs

n

]

. (7)

The first part represents the ASL bulk. The second
part arises from the Hubbard–Stratonovich decoupling of
the Kondo interaction term, where bs

n is a two-component
hybridization order parameter associated with staggered bulk-
spin fluctuations. Such a hybridization order parameter is
determined self-consistently in the saddle-point analysis

Nσ
2JK

γ0bs
n =

〈∫
d2k

(2π)2

Nσ∑

σ=1

χ†
σψnσ (k)

〉

. (8)

The third part describes impurity-spinon dynamics, where
hσ = σH is an external magnetic field and λ is a Lagrange
multiplier field to impose the pseudo-fermion constraint.

When the bulk system is in the non-interacting fixed
point corresponding to the absence of gauge interactions, the
effective Kondo model becomes the multi-channel pseudogap
Kondo model, where the channels come from Dirac nodes
n = 1, . . . , Nn . This model was argued to show an I-QPT
from a decoupled local-moment state to an over-screened phase
in the large-Nσ approximation although this analysis does not
capture the over-screened Kondo physics very well [13]. On
the other hand, the present bulk system lies at the interacting
fixed point characterized by the anomalous critical exponent
ηψ , where quasiparticle excitations do not exist. In this case it
is not clear whether the conventional Kondo screening picture
is applicable.

Integrating out bulk-spinon and gauge excitations, we
obtain an effective impurity action in energy–momentum space

4
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S imp
eff =

∫
dk0

2π

[ Nσ∑

σ=1

χ†
σ (ik0 − hσ + εχ )χσ

−
Nσ∑

σ=1

Nn∑

n=1

bs†
n χ

†
σ

(∫
d2k

(2π)2
〈ψnσ (k)ψ̄nσ (k)〉

)

γ0χσbs
n

+ Nσ
2JK

Nn∑

n=1

bs†
n γ0bs

n − εχ Qχ

]

, (9)

where iλ is replaced with εχ to clarify its physical meaning.
The main question in this impurity action is how to evaluate
the spinon Green’s function. As discussed intensively in
the previous section, the single particle propagator has an
anomalous scaling exponent, given by 〈ψnσ (k)ψ̄nσ (k)〉 =
−iγμkμ/|k|2−ηψ . This expression seems to be consistent
with equation (5) if ‘sub-leading’ uniform spin-correlation
contributions are not taken into account. This is because
the critical exponent of the staggered spin–spin correlation
function is found to be twice the exponent of the single
particle propagator, i.e. 2ηψ in the case of ηψ < 0 [29, 30].
Such correspondence occurs when both critical exponents are
calculated in a gauge invariant way. This correspondence was
also pointed out in [23].

Such spinon excitations with an anomalous scaling
exponent result in anomalous energy-dependent (nonlocal in
time) interactions for impurity fermions, as reflected in the
kernel of

∫
d2k
(2π)2

iγμkμ
|k|2−ηψ ≡ iγμFμ(k0). The vector function

Fμ(k0) is obtained to be

Fμ(k0) =
∫

d2k

(2π)2
kμ

(k2
0 + k2)1−ηψ /2

= k0
(k2

0 +�2)ηψ/2 − |k0|ηψ
2πηψ

δμ0, (10)

thus iγμFμ(k0) = iγ0k0 F(k0) with F(k0) = [(k2
0 +�2)ηψ /2 −

|k0|ηψ ]/2πηψ , where � is a momentum cutoff.
Inserting equation (10) into equation (9) and integrating

over impurity fermions in equation (9), we find the following
expression for the impurity free energy

Fimp = −
∫ ∞

−∞
dk0

2π

Nσ∑

σ=1

ln

[

(ik0 − hσ + εχ)

+ ik0 F(k0)

Nn∑

n=1

bs†
n bs

n

]

+ Nσ
2JK

Nn∑

n=1

bs†
n γ0bs

n − εχ Qχ . (11)

Expressing the hybridization order parameter as a two-
component spinor bs†

n = (bs†
n+bs†

n−), one can find bs
n− = 0 in

the saddle-point analysis. Representing the above impurity free
energy with bs

n+ ≡ 2b, we obtain

Fimp = − Nσ
2

∫ ∞

−∞
dk0

2π

[

ln

(

ik0 − H + εχ

+ ik0
2Nn

πηψ
|b|2{(k2

0 +�2)ηψ/2 − |k0|ηψ
}
)

+ ln

(

ik0 + H + εχ + ik0
2Nn

πηψ
|b|2{(k2

0 +�2)ηψ/2

− |k0|ηψ
}
)]

+ 2Nσ Nn

JK
|b|2 − εχ Qχ . (12)

Minimizing the impurity free energy with respect to b and εχ ,
we find the saddle-point equations giving the self-consistency

b

(
1

JK
−

∫ ∞

0

dk0

2π

{

k2
0

2

πηψ

{
(k2

0 +�2)ηψ/2 − k
ηψ
0

}

×
[

1 + 2Nn

πηψ
|b|2{(k2

0 +�2)ηψ/2 − k
ηψ
0

}
]}

×
{

k2
0

[

1 + 2Nn

πηψ
|b|2{(k2

0 +�2)ηψ /2 − k
ηψ
0

}
]2

+ ε2
χ

}−1)

= 0,
Qχ

Nσ
=

−
∫ ∞

0

dk0

2π

2εχ

k2
0

[
1 + 2Nn

πηψ
|b|2{(k2

0 +�2)ηψ /2 − k
ηψ
0

}]2 + ε2
χ

.

(13)

Since the impurity free energy is momentum-cutoff-
dependent, it is necessary to make it cutoff-independent,
taking appropriate scaling transformations for all variables.
Considering the scaling dimension of ψnσ given by
dim[ψnσ ] = 1 + ηψ/2, one can find dim[b] = −ηψ/2 and
dim[JK] = −1 − ηψ , where dim[Ô] represents the scaling
dimension of an operator Ô. Then, the scale-free impurity free
energy is obtained to be

fimp ≡ Fimp

�
= − Nσ

4π

∫ ∞

−∞
dx

[

ln

(

ix − h + εr

+ ix
2Nn

πηψ
|br|2

{
(x2 + 1)ηψ/2 − |x |ηψ}

)

+ ln

(

ix + h + εr + ix
2Nn

πηψ
|br|2

{
(x2 + 1)ηψ/2

− |x |ηψ}
)]

+ 2Nσ Nn

Jr
|br|2 − εr Qχ , (14)

where such rescaled variables are given by

br = b

�−ηψ /2 , Jr = JK

�−(1+ηψ ) ,

εr = εχ

�
, x = k0

�
, h = H

�
.

Notice that these scaled variables are dimensionless. Accord-
ingly, the self-consistent saddle-point equations read

1

Jr
= 1

π2

∫ ∞

0
dx

{
x2

ηψ

{
(x2 + 1)ηψ/2 − xηψ

}

×
[

1 + 2Nn

πηψ
|br|2

{
(x2 + 1)ηψ/2 − xηψ

}
]}

×
{

x2

[

1 + 2Nn

πηψ
|br|2

{
(x2 + 1)ηψ/2 − xηψ

}
]2

+ ε2
r

}−1

,

Qχ

Nσ
= − 1

π

×
∫ ∞

0
dx

εr

x2
[
1 + 2Nn

πηψ
|br|2

{
(x2 + 1)ηψ/2 − xηψ

}]2 + ε2
r

.

(15)

The QCP of the I-QPT can be found with br → 0 and
εr → 0 in the particle–hole symmetric case, Qχ/Nσ = 1/2.
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Figure 1. Renormalized critical Kondo coupling constant as a
function of the ASL exponent.

Then, the critical renormalized Kondo coupling constant is
obtained from equation (15),

1

Jrc
= 1

π2ηψ

∫ ∞

0
dx

{
(x2 + 1)ηψ/2 − xηψ

}

= 1

2π3/2ηψ

�
(− 1+ηψ

2

)

�
(− ηψ

2

) , (16)

as far as the ASL exponent lies in −1 < ηψ < 1. In the large
Nσ limit the ASL exponent may also satisfy this condition
as discussed in section 2. In addition, this critical value is
continuously defined in the limit of ηψ → ±0, where the
impurity critical point2 is given by

1

Jrc
= 1

2π2

∫ ∞

0
dx ln

(
1 + 1

x2

) = 1

2π
, (17)

consistent with the previous study [13].
It is interesting to notice that the I-QPT occurs as long as

the ASL exponent |ηψ | < 1. Remember that in the regime of
0 < ηψ < 1 critical spinon excitations are less coherent than
those in the pseudogap Kondo model (ηψ = 0) while in the
regime of −1 < ηψ < 0 such spinon excitations become more
coherent than quasiparticle excitations in the Fermi liquid with
pseudogap. To screen the magnetic impurity, stronger Kondo
couplings would be required when quasiparticle excitations are
less coherent. Actually, we find such an asymmetric behavior
for the ASL exponent in figure 1, obtained from equation (16).

It might seem mysterious that the critical Kondo coupling
vanishes as ηψ → ±1. As the ASL exponent approaches 1,
critical spinon excitations are not only less coherent but also
localized. Considering the spinon propagator equation (2),

2 The saddle-point equations of the pseudogap Kondo model can be obtained
from equation (14) in the limit of ηψ → 0

1

Jr
= 1

2π2

∫ ∞

0
dx

x2 ln
(

1 + 1
x2

)[
1 + Nn

π
|br|2 ln

(
1 + 1

x2

)]

x2
[
1 + Nn

π
|br|2 ln

(
1 + 1

x2

)]2 + ε2
r

,

Qχ

Nσ
= − 1

π

∫ ∞

0
dx

εr

x2
[
1 + Nn

π
|br|2 ln

(
1 + 1

x2

)]2 + ε2
r

,

giving rise to equation (16) for the impurity QCP.

ηψ = 1 makes it energy–momentum-independent. Such
localized spinons are expected to form a Kondo singlet with
an impurity spin immediately. When the ASL exponent goes
to −1, it is important that the bare scaling dimension of the
Kondo coupling (dim[JK] = −1 −ηψ ) vanishes, implying that
Kondo interactions are marginal perturbations similar to the
conventional Kondo effect in the Fermi liquid. In this respect
the critical Kondo coupling would go to zero as ηψ → −1.

Solving equation (15) numerically, one can find the
hybridization amplitude |br|2 as a function of the Kondo
coupling Jr. We show the I-QPT in figure 2, where both br

and εr vanish as Jr → Jrc. It is important to notice that the
x-axis is Jr − Jrc instead of Jr. This means that the impurity
QCP matches the origin of the x-axis. The absolute value of
the impurity chemical potential increases rapidly as the ASL
exponent increases from ηψ = −0.2 to 0.2 (figure 2(a)).
Accordingly, the increasing ratio of the hybridization order
parameter is largest for ηψ = 0.2 and smallest for ηψ = −0.2.
This may be associated with localization tendency emerging
from a positive exponent. A further analysis finds a scaling
behavior of the hybridization amplitude not only near the
impurity QCP, but also further away from the QCP, i.e. in the
Kondo-screened phase. Such a scaling behavior even in the
Kondo phase seems to arise from the criticality of the bulk
system. From the log–log plot of figure 2(b), we find the
scaling relation

|br|2 ∼ (Jr − Jrc)
f (ηψ ) (18)

with f (ηψ) ≈ 3+2ηψ , confirming that the slope of the positive
ASL exponent is larger than that of the negative one.

The I-QPT can be also found in the impurity-spin
susceptibility,

χimp = −∂
2 fimp(h)

∂h2
= − Nσ

π

∫ ∞

0
dx

×
ε2

r − x2
[
1 + 2Nn

πηψ
|br|2

{
(x2 + 1)ηψ /2 − xηψ

}]2

(
x2

[
1 + 2Nn

πηψ
|br|2

{
(x2 + 1)ηψ/2 − xηψ

}]2 + ε2
r

)2 . (19)

In the decoupled phase (Jr < Jrc) the impurity susceptibility
diverges in the zero temperature limit (following the Curie
law) while it vanishes in the screened phase. Since for ηψ =
−0.2 the hybridization amplitude is smallest, the impurity-
spin susceptibility becomes largest. Approaching the impurity
QCP (Jr → Jrc), it shows a power-law divergence with an
anomalous critical exponent of the ASL bulk. As shown in
figure 3, such curves are well fitted with

χimp ∼ (Jr − Jrc)
−g(ηψ ), (20)

where the scaling function is g(ηψ) ≈ 2 − ηψ . It is valuable to
consider how the behavior of the impurity susceptibility differs
from that of the pseudogap Kondo model 3 which corresponds
to the case of ηψ = 0.

3 In the pseudogap Kondo model the impurity susceptibility is given by

χimp = − Nσ
π

∫ ∞

0
dx

ε2
r − x2

[
1 + Nn

π
|br|2 ln

(
1 + 1

x2

)]2

(
x2

[
1 + Nn

π
|br|2 ln

(
1 + 1

x2

)]2 + ε2
r

)2
.

Remember that the impurity susceptibility based on the large-Nσ analysis
exhibits a logarithmic correction due to the upper critical dimensionality [13].
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(a) (b)

Figure 2. Impurity chemical potential, εr, and hybridization amplitude, br, (log–log plot) as a function of the renormalized Kondo coupling,
Jr, for various ASL exponents. Here εr, br, and Jr are dimensionless rescaled variables.

Figure 3. Impurity spin susceptibility (log–log plot) as a function of
the renormalized Kondo coupling for various ASL exponents.

Next, we evaluate the impurity specific heat. The zero
temperature formulation (equation (14)) for the impurity free
energy can be transformed to the finite temperature version
through the Wick rotation. Following [13, 31], we find the
impurity free energy at finite temperatures,

fimp = Nσ

∫ ∞

−∞
dξ

π

1

eβrξ + 1
�(ξ)+ 2Nσ Nn

Jr
|br|2 − εr Qχ

with a rescaled temperature β−1
r = Tr = T/�, where the

‘angle’ function �(ξ) is given by

�(ξ) = tan−1

({
2Nn

πηψ
|br|2 sin

(
πηψ

2

)

|ξ |1+ηψ
}

×
{

ξ

[

1 + 2Nn

πηψ
|br|2

{
(−ξ 2 + 1)ηψ/2

− cos

(
πηψ

2

)

|ξ |ηψ}
]

+ εr

}−1)

+ π

2
(1 − sign(ξ)) for |ξ | < 1,

= tan−1

({
2Nn

πηψ
|br|2 sin

(
πηψ

2

)

ξ
{
(ξ 2 − 1)ηψ /2 − |ξ |ηψ }

}

Figure 4. Specific heat coefficient (log–log plot) as a function of the
renormalized Kondo coupling for various ASL exponents.

×
{

ξ

[

1 + 2Nn

πηψ
|br|2 cos

(
πηψ

2

)
{
(ξ 2 − 1)ηψ /2 − |ξ |ηψ }

]

+ εr

}−1)

+ π

2
(1 − sign(ξ)) for |ξ | � 1. (21)

Here, the denominator and numerator in the angle function
correspond to the real and imaginary parts of the kernel for
the impurity free energy (equation (14)), respectively.

We find the impurity entropy

Simp = −∂ fimp

∂Tr

∣
∣
∣
∣
εr,br

= Nσ

∫ ∞

−∞
dξ

π

ξ

Tr

∂

∂ξ

(
1

eβrξ + 1

)

�(ξ)

(22)

and specific heat coefficient

γimp = Cimp

Tr
= ∂Simp

∂Tr

= Nσ
T 2

r

∫ ∞

−∞
dξ

π
ξ 2 ∂

∂ξ

(
1

eβrξ + 1

)
∂�(ξ)

∂ξ
. (23)

Taking the zero temperature limit, we find the self-consistent
results in figure 4, using the solutions of equation (15). The
latter terms in equation (21) ensure that the impurity entropy

7
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Figure 5. Wilson’s ratio (y axis-log plot) as a function of the
renormalized Kondo coupling for various ASL exponents.

is Simp/Nσ = ln 2 in the decoupled phase, consistent with our
expectation. In the Kondo phase the impurity entropy vanishes,
but we note that more elaborate calculations result in small
nonzero entropy contributions in the Kondo phase [32, 33].
The γimp coefficient shows a behaviour similar to the impurity
susceptibility χimp, diverging as Jr → Jrc. It exhibits the
scaling behaviour

γimp ∼ (Jr − Jrc)
−h(ηψ ) (24)

with h(ηψ) ≈ 2 − 0.2ηψ in our numerical analysis.
Using the impurity susceptibility and specific heat

coefficient, one can find Wilson’s ratio in the zero temperature
limit

Wimp(Tr → 0) = γimp

χimp

∣
∣
∣
∣
Tr→0

. (25)

In figure 5 we plot this value as a function of the rescaled
Kondo coupling Jr − Jrc. Remember Wimp = 2 in the
Kondo effect of the Fermi liquid. Here, we also obtain a
similar value for the pseudogap Kondo model (ηψ = 0.001).
An important observation is that Wilson’s ratio is strongly
dependent on the ASL exponent. For the negative exponent
Wilson’s ratio becomes enhanced while it is suppressed for
the positive one. This result can be understood as follows.
Wilson’s ratio represents the ratio of the density of states
measured from specific heat and spin susceptibility. For the
case of a negative exponent, bulk spinons are more coherent,
thus screening an impurity spin more strongly. This enhances
the density of states measured from the specific heat while it
suppresses the impurity spin susceptibility owing to stronger
hybridization. For the case of a positive exponent bulk spinons
are less coherent, and their screening for an impurity spin
becomes weak. Then, the impurity spin susceptibility becomes
larger owing to weak hybridization while the density of states
measured from the impurity specific heat becomes smaller.
This is the reason why the impurity Wilson’s ratio is larger than
2 in the case of a negative exponent while it is smaller than 2
in the case of a positive one.

The above discussion implies that Wilson’s ratio can be
utilized as a probe for revealing the nature of SLs and, more
generally, the criticality of the bulk system. An important

issue is to determine the statistics of spinons. There are
no obvious ways to determine whether they are bosonic or
fermionic. Theoretically, there is no fundamental reason why
one should take the bosonic or fermionic representation for the
spin operator. However, the knowledge of the exponent ηψ will
be helpful in determining the nature of a possible SL phase in
a frustrated antiferromagnet.

One can say, with appropriate confidence, that the sign of
the exponent will be positive if gapless U(1) gauge fluctuations
are absent and usual local interactions are considered. Possible
bosonic SLs in frustrated antiferromagnets do not have such
U(1) gauge fluctuations since non-collinear spin ordering,
possibly arising in a frustrated antiferromagnet, will give rise
to a gapped Z2 SL [34]. This seems to be theoretically
fundamental.

If the exponent can be measured from the impurity
Wilson’s ratio and its sign is negative, this excludes bosonic
Z2 SL physics and supports strong evidence for the existence
of gapless gauge fluctuations, since in gapped bosonic SLs the
exponent will be positive. Considering the fact that a bosonic
U(1) SL can arise from a collinear antiferromagnetic order in
a non-frustrated lattice such as a square one via a deconfined
QCP [35, 36], one can claim that possible realization for a
SL phase in the frustrated antiferromagnet is fermionic with
long-range gauge interactions although there is uncertainty
in determining the exponent theoretically. However, most
calculations support its sign being negative, as discussed
before. In this respect a fermionic U(1) SL will be a strong
candidate if ηψ < 0 is measured.

4. Summary and discussion

It is valuable to remember several assumptions for solving the
ASL Kondo problem. First of all, we have considered the
effects of staggered spin fluctuations on the dynamics of a
magnetic impurity, ignoring those of uniform spin correlations,
since antiferromagnetic spin fluctuations are most susceptible
in the ASL bulk, and thus expected to give dominant
contributions to this problem. In addition, ferromagnetic spin
correlations do not show anomalous scaling, implying that
such contributions would coincide with the pseudogap Kondo
effect, thus not being so interesting. Our second assumption
is in writing a spinon Green’s function, where effects of
gauge fluctuations are introduced in an anomalous critical
exponent. In the present paper we have used the scaling
exponent as a phenomenological parameter. Both assumptions
are compatible since the critical exponent of the staggered
spin–spin correlation function is consistent with that of the
single particle propagator when both critical exponents are
evaluated in a gauge invariant way.

The third assumption is rather an approximation than an
assumption for solving the effective impurity action, while
the above two are basic assumptions for deriving the impurity
action. In the slave-boson representation of this effective
impurity action we have performed the large-Nσ analysis
introducing the hybridization order parameter. Although well-
defined quasiparticle excitations do not exist in the case of
ηψ 
= 0, it was shown that the I-QPT occurs between the
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local-moment state and the Kondo-screened phase. Evaluating
the impurity spin susceptibility and specific heat coefficient,
we found that Wilson’s ratio depends strongly on the ASL
exponent. This result has an important physical meaning
because Wilson’s ratio for the magnetic impurity reflects the
criticality of the bulk system. This conclusion will be available
to general critical systems with exact screening particularly,
where the expression of the Kondo vertex is the same as that
of the present paper4. In this respect Wilson’s ratio for the
magnetic impurity may be one possible probe for measuring
bulk criticality.

A cautious physicist may ask how realistic the measure-
ment of Wilson’s ratio for an impurity spin in a spin liquid
is. The measurement of the impurity specific heat and spin
response in the ordinary Kondo effect relies on the fact that
the Fermi liquid nature is well known. The impurity specific
heat can be obtained by the differences for the systems with
and without impurities. Obtaining the impurity spin response
is very difficult in a real spin system since the background host
shows a strong spin response which may dominate over the sig-
nal from the local spin, while the impurity spin response in a
Fermi liquid is dominated by the local spin.

It is interesting to compare the ASL Kondo physics with
the Kondo effect in a Luttinger liquid [37, 38], since the
ASL can be considered as the high-dimensional realization
of a Luttinger liquid. In a Luttinger liquid the Kondo
interaction term can be decomposed to the forward and
backward scattering channels, analogous to the uniform and
staggered ones in the ASL. It was shown that the forward
scattering channel is irrelevant in the renormalization group
analysis up to two-loop order [38]. Similarly, in this paper
we take into account only the antiferromagnetic correlation
channel for the ASL Kondo effect, although it is not proven
that the ferromagnetic channel is irrelevant. The backward
impurity scattering in the Luttinger liquid was shown to
cause anomalous scaling and, in particular, the power-law
behaviour of the Kondo temperature owing to the presence of
the anomalous critical exponent in the Luttinger liquid [38].
This is basically the same as the ASL Kondo effect that the
ASL criticality results in anomalous scaling on the impurity
physics, although there is no phase transition in the Luttinger
liquid owing to its one-dimensionality.

It should be noted that it is difficult to use the present
mean-field analysis to describe correct scaling behaviours
in the over-screened phase since the hybridization order
parameters are not regarded as dynamic variables but static
ones. This approximation scheme seems to be more
appropriate when quasiparticle excitations are well defined,
thus the conventional Kondo screening picture is applicable.
The slave-boson mean-field scheme can be improved using
the non-crossing approximation (NCA) [32], where such
hybridization parameters are taken to be dynamic variables,
thus quantum fluctuations are more involved. Performing

4 Note that the O(3) critical bulk described by spin 1 critical fluctuations is not
described by the present Kondo model. The present results cannot be applied
to all critical bulk systems in spite of their generality because the vertex in the
Kondo interaction differs in each system, depending on the quantum numbers
of critical modes in the bulk system.

the Hubbard–Stratonovich transformation for the nonlocal (for
time) hopping term in equation (9), we find an effective
impurity action

SNCA =
∫

dk0

2π

[ Nσ∑

σ=1

χ†
σ (ik0 − hσ + εχ)χσ

+ Nσ
2JK

Nn∑

n=1

bs†
n γ0bs

n − εχ Qχ

]

+
∫

dk0

2π

[∫
dk ′

0

2π

�χ(k0)�b(k ′
0)

i(k0 − k ′
0)F(k0 − k ′

0)

−
Nσ∑

σ=1

χ†
σ (k0)�b(k0)χσ (k0)

+
Nn∑

n=1

bs†
n (k0)�χ (−k0)b

s
n(k0)

]

,

where�χ(k0) and�b(k0) are fermion and boson self-energies,
respectively, determined by the following self-consistent NCA-
type equations

�χ(τ
′ − τ ) = F(τ − τ ′)

〈 Nσ∑

σ=1

χ†
σ (τ )χσ (τ

′)
〉

,

�b(τ − τ ′) = −F(τ − τ ′)
〈 Nn∑

n=1

bs†
n (τ )b

s
n(τ

′)
〉

with F(k0) = ik0 F(k0). This kind of approximation is
well known to catch non-Fermi liquid physics in the multi-
channel Kondo model [32]. Scaling behaviours of both bosonic
and fermionic self-energies are expected in the low-energy
limit, causing anomalous critical physics to this system even
in the case of ηψ = 0. By inserting the expected scaling
forms for both the self-energies and renormalized Green’s
functions in the NCA equations, we would obtain the total
anomalous scaling exponents which are expected to be the
sum of the critical exponents of the multi-channel pseudogap
Kondo model and the ASL scaling dimension approximately,
considering the presence of the ASL scaling exponent in F(τ−
τ ′). It will be interesting to examine how the scaling exponents
in the conventional bulk are affected by the presence of the
ASL exponent.

Applying magnetic fields to the ASL, the impurity QPT
is expected to disappear. Because external magnetic fields
would result in a finite density of states at the Fermi energy,
conventional Kondo physics may appear, where only the
over-screened Kondo phase would occur, independent of the
Kondo interaction. Furthermore, gauge fluctuations would
be dissipative due to the finite density of states, and the
bulk system becomes more ‘Fermi liquid’-like, supporting the
above expectation.

In the present analysis we did not consider scattering
due to randomly distributed disorder potentials. One of the
present authors has studied the role of random potentials in
the ASL, and found that such a spin liquid phase remains
stable against weak disorders because massless Dirac spinons
at the interacting fixed point live in higher spatial dimensions
than the two owing to the presence of the anomalous critical
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exponent [39], remember the presence of the delocalization
transition above two spatial dimensions. However, it is not
clear whether the diffusive nature appears or not in the ASL.
If so, the presence of a finite density of states due to random
potential scattering may destroy the I-QPT as in the case of
magnetic fields.
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